AZIZ LECTURES: Numerical Solution of Differential Equations
www.math.umd.edu/aziz

April 15, 2015, 3:15 pm
Colloquium Room (MTH 3206)

Prof. Lenya Ryzhik
Stanford University

Waves in random media: the story of the phase

The macroscopic description of wave propagation in random Media typically focuses on the scattering of the wave intensity, while the phase is discarded as a uselessly random object. At the same time, most of the beauty in wave scattering come from the phase correlations. I will describe some of the miracles, as well as some limit theorems for the wave phase.

May 6, 2015, 3:15 pm
Colloquium Room (MTH 3206)

Prof. Endre Süli
University of Oxford

Mathematical challenges in kinetic models of dilute polymers: analysis, approximation and computation

We survey recent analytical and computational results for coupled macroscopic-microscopic bead-spring chain models that arise from the kinetic theory of dilute solutions of polymeric fluids with noninteracting polymer chains, involving the unsteady Navier–Stokes system in a bounded domain and a high-dimensional Fokker–Planck equation.

Department of Mathematics
University of Maryland
College Park, MD 20742
The Aziz Lectures are sponsored by Prof. A. Kadir Aziz. The purpose of the lectures is to bring distinguished mathematicians to the University of Maryland, College Park, to give survey lectures on the numerical solution of differential equations and related areas.

Prof. Aziz received his Ph.D. from the University of Maryland, College Park in 1957. He was on the faculty of Georgetown University from 1956 to 1967, and has been on the faculty at the University of Maryland, Baltimore County since 1967. He is presently Professor Emeritus of Mathematics and Statistics at UMBC. Throughout his career Prof. Aziz has been an active member of the Numerical Analysis group at College Park.

Directions by Metro: Take the Green Line to the College Park station. On the east side of the station take a University bus to campus.

Directions by car: From I-95/495 take exit 25 to US-1 South and College Park. Go south for about 1.5 miles. At the main campus entrance make a right turn onto Campus Drive and continue past the traffic circle with the big "M". Turn right just beyond the Student Stamp Union. The Union Lane Garage will be on your left.

For more information see www.math.umd.edu/aziz