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Abstract  
 
This dissertation examines the problems of optimizing the selection of the datasets and 
experiments used for parameterizing machine learning-based electrochemical battery models. 
The key idea is that data selection, or “probing” can empower such models to achieve greater 
fidelity levels. The dissertation is motivated by the potential of battery models to enable both the 
prediction and optimization of battery performance and control strategies. The literature presents 
multiple battery modeling approaches, including equivalent circuit, physics-based, and machine 
learning models. Machine learning is particularly attractive in the battery systems domain, thanks 
to its flexibility and ability to model both battery performance and aging dynamics. Moreover, 
there is a growing interest in the literature in hybrid models that combine the benefits of machine 
learning with either the simplicity of equivalent circuit models or the predictiveness of physics- 
based models or both. 
 

The focus of this dissertation is on both hybrid and purely data-driven battery models. 
Moreover, the overarching question guiding the dissertation is: how does the selection of the 
datasets and experiments used for parameterizing these models affect their fidelity and parameter 
identifiability? Parameter identifiability is a fundamental concept from information theory that 
refers to the degree to which one can accurately estimate a given model’s parameters from 
input-output data. There is substantial existing research in the literature on battery parameter 
identifiability. An important lesson from this literature is that the design of a battery experiment 
can affect parameter identifiability significantly. Hence, test trajectory optimization has the 
potential to substantially improve model parameter identifiability. The literature explores this 
lesson for equivalent circuit and physics-based battery models. However, there is a noticeable gap 
in the literature regarding identifiability analysis and optimization for both machine learning-based 
and hybrid battery models. 
 

To address the above gap, the dissertation makes four novel contributions to the literature. 
The first contribution is an extensive survey of the machine learning-based battery modeling 
literature, highlighting the critical need for information-rich and clean datasets for parameterizing 
data-driven battery models. The second contribution is a K-means clustering-based algorithm 
for detecting outlier patterns in experimental battery cycling data. This algorithm is used for 
pre-cleaning the experimental cycling datasets for laboratory-fabricated lithium-sulfur (Li-S) 
batteries, thereby enabling the higher-fidelity fitting of a neural network model to these datasets. 
The third contribution is a novel algorithm for optimizing the cycling of a lithium iron phosphate 
(LFP) to maximize the parameter identifiability of a hybrid model of this battery. This algorithm 
succeeds in improving the resulting model’s Fisher identifiability significantly in simulation. 
The final contribution focuses on the application of such test trajectory optimization to the 
experimental cycling of commercial LFP cells. This work shows that test trajectory optimization 
is effective not just at improving parameter identifiability, but also at probing and uncovering 
higher-order battery dynamics not incorporated in the initial baseline model. Collectively, all 
four of these contributions show the degree to which the selection of battery cycling datasets 
and experiments for richness and cleanness can enable higher-fidelity data-driven and hybrid 
modeling, for multiple battery chemistries. 


