Categories
Announcements Defenses

Thesis Defense – Haafiz Husker

Title: INFLATABLE ACOUSTIC METAMATERIAL

Author: Haafiz Husker

Committee Members:
Dr. Amr Baz (Adviser – Chair)
Dr. Balakumar Balachandran
Dr. Hosam Fathy

Exam Time:  May 20, 2021 (Thursday) at 9:30AM

Abstract: Acoustic metamaterials thus far have been either passive or employed stacking to produce wide range of results. With the advent of advanced additive manufacturing techniques, the ability to create novel metamaterials have increased. Usually these Acoustic Meta Material are passive like in case of Membrane-type and Plate-type metamaterials. They are usually thin membranes or plates consisting of periodic unit cells with added masses. Numerous studies have shown these metamaterials exhibit tunable anti resonances with transmission loss greater than their corresponding mass-law. In these studies, the tunability is usually produces with complex electrical architecture and furthermore, in most of the investigations it is assumed that the unit cell edges of the metamaterial are fixed.

In this study, an innovative method is explored to create an active metamaterial that can be easily tunned. The proposed method distinguishes itself from past contributions by employs a unique unit cell design that is fabricated via advanced additive manufacturing to create a meta-material that exhibits negative Poison’sratio with adjustable unit cell edges for greater transmission loss than its mass-law would otherwise suggest. The membrane like Meta-material is tuned by inflating itself with pressurized air. The pressurization leads to large non-linear deformation and geometric stiffing in the membrane apart from adding mass by expanding its elastic unit cell edges. Which is exploited to adjust the eigen-modes and sound loss of the structure.

The veracity of this proposed design is then investigated analytically and experimentally. The metamaterial is manufactured using elastic material called Agilus- 30 via Multi-jet Manufacturing and is tested in an impedance tube to see its trans- mission loss. Finite elemental analysis is done to reduce the computational effort in creating an analytical model. The finite element analysis is compared with the experimental results to arrive at a consensus. The proposed metamaterial is then tested in real life application by conducting frequency response on a headphone with the IAMM installed to truly understand, the performance of such a setup. The results of these tests indicate the range of performance across low and high frequency as well as the versatility of the metamaterial to be adapted into any size as per the                                               requirement.

Categories
Announcements Defenses

Thesis Defense – Hyun Seop Lee

Title: Temperature Dependent Characterization of Polymers for Accurate Prediction of Stresses in Electronic Packages

Author: Hyun Seop Lee

Date/Time : May 18, 1~3 pm

Committee members:
Prof. Bongtae Han (Chair)
Prof. Abhijit Dasgupta
Prof. Patrick McCluskey
Prof. Peter Sandborn
Prof. Sung W. Lee (Dean’s representative)

Abstract: Epoxy molding compound (EMC) is a thermosetting polymer filled with inorganic fillers such as fused silica.  EMC has been used extensively as a protection layer in various semiconductor packages.  The warpage and the residual stress of packages are directly related to the thermomechanical properties of EMC.  As the size of semiconductor packages continues to shrink, prediction of the warpage and residual stress becomes increasingly important.  The viscoelastic properties of EMC are the most critical input data required for accurate prediction.  In spite of the considerable effort devoted to warpage prediction, accurate prediction of warpage remains a challenging task.  One of the critical reasons is the inappropriate assumption about the bulk modulus – time and temperature “independent” bulk modulus, which is not valid at high temperatures.  

In this thesis, a novel experimental method, based on an embedded fiber Bragg grating (FBG) sensor, is developed, and implemented to measure a complete set of linear viscoelastic properties of EMC just from a single configuration.  A single cylindrical EMC specimen is fabricated, and it is subjected to constant uniaxial compression and hydrostatic pressure at various temperatures.  Two major developments to accommodate the unique requirements of EMC testing include: (1) a large mold pressure for specimen fabrication; and (2) a high gas pressure for hydrostatic testing while minimizing a temperature rise.  The FBG embedded in the specimen records strain histories as a function of time.  Two linear viscoelastic properties, Young’s modulus and Poisson’s ratio, are first determined from the strain histories, and the other two elastic properties, Shear modulus and Bulk modulus, are calculated from the relationship among the constants.  The master curves are produced, and the corresponding shift factors are determined.  Validity of three major assumptions associated with the linear viscoelasticity – thermorheological simplicity, Boltzmann superposition and linearity – are verified by supplementary experiments.  The effect of the time-dependent bulk modulus on thermal stress analysis is also discussed.

Categories
Announcements Defenses

Dissertation Defense – Jonathan Kordell

Title: Parametric Design and Experimental Validation of Conjugate Stress Sensors for Structural Health Monitoring

Author: Jonathan Kordell

Date/Time: Date/Time – May 13, 2021 at 10am EDT

Examining Committee:
Dr. Abhijit Dasgupta
Dr. Miao Yu
Dr. Bongtae Han
Dr. Amr Baz
Dr. Hugh Bruck
Dr. Inderjit Chopra

Abstract:
In this dissertation, conjugate stress (CS) sensing is advanced through a parametric evaluation of a surface-mounted design and through experimental validation in monotonic and cyclic tensile tests. The CS sensing concept uses a pair of sensors of significantly different mechanical stiffness for direct query of the instantaneous local stress-strain relationship in the host structure, thus offering measurement of important health indicators such as stiffness (modulus), yield strength, strain hardening, and cyclic hysteresis. In this study, surface-mounted CS sensor designs are parametrically evaluated with finite element modeling, with respect to the sensors’ location, thickness, and modulus and the external loading state. An analytic pin-force model is developed to infer the host structure’s stress-strain state, based on the strain outputs of the CS sensor-pair.  Two CS sensor designs are fabricated – the first employs resistive foil strain gauges and the second employs fiber optic sensors – and paired with the pin-force model for experimental demonstration of the measurement of: (i) stress-strain history of three different metal bars (aluminum, copper, and steel) as they experience monotonic tensile loads well into plasticity and (ii) stress-strain hysteresis of a steel bar as it is subject to cyclic tensile fatigue. In the cyclic tests, two machine learning algorithms – anomaly detection and neural net classification – are used in conjunction with the estimated host stiffness from the CS sensor and pin force model to predict the failure time of the steel beams.

Categories
Announcements Defenses

Dissertation Defense – Seyed Fouad Karimian

Title: THERMODYNAMIC AND INFORMATION ENTROPY-BASED PREDICTION  AND DETECTION OF FATIGUE FAILURES IN METALLIC AND COMPOSITE  MATERIALS USING ACOUSTIC EMISSION AND DIGITAL IMAGE  CORRELATION

Author: Seyed Fouad Karimian

Date: Thursday, May 6th, 2:00 – 4:00 PM. 

Zoom Link: https://umd.zoom.us/j/9968970907

Examining Committee:
Professor Mohammad Modarres, Advisor and Chair  
Professor Hugh Bruck, Co-Advisor 
Professor Aris Christou 
Professor Abhijit Dasgupta 
Professor Katrina Groth 
Professor Norman Wereley, Dean’s Representative

Abstract:
Although assumed to be identical, manufactured components always present some  variability in their performance while in service. This variability can be seen in their  degradation path and time to failure as they are tested under identical conditions. In  engineering structures and some components, fatigue is among the most common  degradation mechanisms and has been under extensive study over the past century. A  common characteristic of the fatigue life models is to rely on some observable or  measurable markers of damage, such as crack length or modulus reduction. However, these  markers become more pronounced and detectable toward the end of the component or  structure’s life. Therefore, more advanced techniques would be needed to better account for a structure’s fatigue degradation. Several methods based on non-destructive testing  techniques have developed over the past decades to decrease the uncertainty in fatigue  degradation assessments. These methods seek to exploit the data collected by sensors  during the operational life of a structure or component. Hence, the assessment of the health  state can be constantly updated based on the operational conditions that allow for  condition-based monitoring and maintenance. However, these methods are mostly context dependent and limited to specific experimental conditions. Therefore, a method to  effectively characterize and measure fatigue damage evolution at multiple length scales  based on the fundamental concept of entropy is studied in this dissertation. The two  entropic-based indices used are: Thermodynamic entropy, and, Information entropy. 

The objectives of this dissertation are to develop new methods for fatigue damage detection  and failure prediction in metallic and FRP laminated composite materials by using AE and  DIC techniques and converting them to information and thermodynamic entropy gains  caused by fatigue damage.  

1. Develop and experimentally validate fatigue damage detection, failure prediction,  and prognosis approaches based on the information entropy of AE signal waveforms  in both metallic and FRP laminated composite materials. 

2. Develop and experimentally validate fatigue damage detection, failure prediction,  and prognosis approaches based on thermodynamic entropy using the DIC technique  in both metallic and FRP laminated composite materials. 

3. Develop a framework for RUL estimation of metallic and FRP laminated composite  structures based on the two entropic measures.

Categories
Defenses

Thesis Defense – Aishwarya Prashant Gaonkar

Title: ASSESSMENT OF THE  FIDES RELIABILITY PREDICTION METHODOLOGY

Author: Aishwarya Prashant Gaonkar

Advisory Committee:
Professor Michael G. Pecht
Professor Peter Sandborn
Professor Patrick McCluskey
Professor Diganta Das

Date/Time: Wednesday, April 21 9:00-11:00AM

Abstract: The FIDES Guide is a reliability prediction handbook published by a group of European defense and aerospace manufacturers under the supervision of the French Ministry of Defense. FIDES assumes the
hazard rates of electronic systems follow a bathtub curve, and only predicts reliability for the useful life
period using a constant failure rate metric. The inapplicability of the bathtub model to predict the hazard
rate of electronic components, products, and systems is examined. The appropriateness of FIDES model
factors as inputs to a reliability prediction is assessed. It is shown that FIDES uses inappropriate
reliability prediction metric and combines reliability prediction with supply chain risk assessment. The
claim of FIDES being based on the physics-of-failure is assessed and shown to be false. FIDES guide is
evaluated using the questionnaire provided by the IEEE Standard 1413 and it is shown that FIDES lacks
the key attributes that make a reliability prediction useful and accurate.

Categories
Defenses

Dissertation Defense – Ruben Acevedo

Title: INVESTIGATING FLUIDIC ENHANCEMENTS FOR SOFT ROBOTIC APPLICATIONS

Author: Ruben Acevedo

List of Committee Members:
Professor Ryan D. Sochol, Chair/ Advisor
Professor Hugh A. Bruck
Professor Miao Yu
Professor Don DeVoe
Professor Peter Kofinas, Dean’s Representative

Day/Time: Wednesday April 14 @ 1:00 pm

Abstract: Over the past decade, the field of soft robotics has established itself as uniquely suited for applications that would be difficult or impossible to realize using traditional, rigid robots. However, soft robotic systems suffer from two limitations: (i) the inability for soft robots to withstand and transfer high forces and (ii) the tyranny of interconnects for in which each individual fluidic soft actuator either requires its own power source or for the input fluid to be regulated by external electronic valves. In this dissertation, we investigated how to fluidically enhance soft robotic systems to reduce their inherent limitations through the use of negative pressure via layer jamming for programmable variable stiffness and fluidic control via microfluidic circuitry. More specifically, we investigate the use of layer jamming to enhance soft robotic capabilities in (i) a multifunctional sail, (ii) a soft/rigid hybrid robot, and (iii) a multimode actuator and studied the effects layer decohesion has on the mechanical response of layer jamming composites. We also investigated the efficacy of a PolyJet multi-material additive manufacturing strategy to fabricate complete soft robots with fully integrated microfluidic circuitry components such as microfluidic diodes, capacitors, and transistors under three fluidic analogues of conventional electronic signals: (i) constant-flow (i.e., “direct current (DC)”) input conditions, (ii) “alternating current (AC)”-inspired sinusoidal conditions, and (iii) a preprogrammed aperiodic (“variable current”) input. Having fluidically enhanced soft robotic systems will eliminate the need for electronic valves and processors while enable the capability of withstanding and transferring forces found in normal day to day activities, to accelerate their adaptation into mainstream applications. The work to reduce the inherent disadvantages of soft robotic systems offers unique promise to enable new classes of soft robots.

Categories
Announcements Defenses

Dissertation Defense: Caleb Hammer

Title: The Effects of Gravity on Flow Boiling Heat Transfer

Author: Caleb Hammer

Day/Time: Thursday, April 15th, 2021 | 10:00-11:30AM

Zoom Link: https://umd.zoom.us/j/91747518263

Committee Members:
Professor Jungho Kim, Chair
Professor Christopher Cadou, Dean’s Representative
Professor Kenneth Kiger
Professor Reinhard Radermacher
Professor Amir Riaz

Abstract: Flow boiling is a method of phase change heat transfer used widely in electronics cooling, refrigeration, air conditioning, and other areas where stable temperatures are needed. An area of interest is spaceflight systems, where efficient heat transfer is desired to minimize mass, power requirements, and cost. When compared to terrestrial gravity conditions, the heat transfer of flow boiling in microgravity typically depreciates. This depreciation has been documented across multiple experimental studies performed by teams using different fluids, tube geometries, and flow regimes over the past three decades. Though select experimental microgravity flow boiling heat transfer data are available in the literature, holistic results are sparse due to the cost and limited availability of microgravity research.  The two-phase heat transfer mechanisms responsible for the depreciation are therefore not well known, and so heat transfer models for variable gravity flow boiling do not exist.

The goal of the proposed study is to develop models for flow boiling heat transfer through a tube as a function of gravity by identifying the effect of gravity on different heat transfer mechanisms. The scope of this proposal involves modeling three microgravity flow regimes (bubbly, slug, and annular flow) to serve as baseline predictions for flow boiling heat transfer without the influence of gravity. Additional gravity effects can be identified using partial and hyper-gravity data.

Experiments have been performed aboard parabolic flights and on the ground at various flow rates, heating rates, and inlet subcoolings in microgravity, hyper-gravity, Lunar gravity, Martian gravity, and terrestrial gravity. Results from the experiments showed that negligible slip velocity plays an important role in modeling flow boiling heat transfer. Simulations using modified single-phase models of an accelerating flow were performed which predicted microgravity flow boiling heat transfer well in the nucleate boiling regime.

Additional experiments concerning terrestrial gravity quenching heat transfer have been performed to address research gaps in microgravity cryogen chilldown studies. Quenching heat transfer coefficients were recorded in the nucleate boiling regime and compared with correlations. The correlations were able to predict heat transfer for room temperature fluids much more accurately than for cryogenic fluids. Scaling parameters must be tuned to match cryogen data to examine the large disparity between cryogenic quenching heat transfer data and correlations observed in the literature.

Categories
Announcements Defenses

Thesis Defense – Camila Correa Jullian

Title: Data Requirements to Enable PHM for Liquid Hydrogen Storage Systems from a Risk Assessment Perspective

Author: Camila Correa Jullian

Day/Time: April 15, 2021 | 1:00pm (Eastern)

Zoom Link: https://umd.zoom.us/j/7492613806

Examining Committee
Dr. Katrina M. Groth, Chair
Dr. Mohammad Modarres
Dr. Reinhard Radermacher
Dr. William Buttner, Special Member 

Abstract: Quantitative Risk Assessment (QRA) provides tools to aid the development of risk-informed safety codes and standards that reduce risk in a variety of complex technologies, such as hydrogen systems. Currently, the lack of reliability data limits the use of QRAs for fueling stations equipped with bulk liquid hydrogen storage systems. In turn, this hinders the ability to develop the necessary rigorous safety codes and standards to allow worldwide deployment of these stations. Prognostics and Health Management (PHM) and the analysis of condition-monitoring data emerge as an alternative to support risk assessment methods. Through the QRA-based analysis of a liquid hydrogen storage system, the core elements for the design of a data-driven PHM framework are addressed from a risk perspective. This work focuses on identifying the data collection requirements to strengthen current risk analyses and enable data-driven approaches to improve the safety and risk assessment of a liquid hydrogen fueling infrastructure

Categories
Defenses

Dissertation Defense – Kiran Raj Goud Burra

Title: Investigation into Pyrolysis and Gasification of Solid Waste Components and Their Mixtures

Author: Kiran Raj Goud Burra

Date/Time: March 29th, 2021 | 11:00 AM

Dissertation Committee:
Professor Ashwani K. Gupta, Chair
Professor Nam Sun Wang
Professor Bao Yang
Professor Gary A. Pertmer
Professor Dongxia Liu, Dean’s Representative

Abstract:
Carbon neutral sources such as abundant biomass reserves and landfill-destined high energy density wastes such as plastics, and tire-wastes can be utilized together for energy and material production for a sustainable future. Pyrolysis and gasification can convert these variable feedstocks into valuable and uniform synthetic gas (syngas) with versatile downstream applicability to energy, liquid fuels, and other value-added chemicals production. But seasonal availability, high moisture and ash content, and relatively low energy density of biomass can result in significant energy and economic losses during gasification. Furthermore, gasification of plastic wastes separately was found to result in feeding issues due to melt-phase, coking, and agglomerative behavior leading to operational issues. To resolve these issues, co-processing of biomass with these plastics and rubber wastes was found to be promising in addition to providing synergistic interaction leading to enhanced syngas yield and inhibitive behavior in some cases and thus motivating this work. This dissertation provides a deconvoluted understanding and quantification of the source and impact of these interactions for better process performance and alleviation of inhibitive interaction needed to develop reliable co-gasification of feedstock mixtures. They address the knowledge gap in versatile feedstock-flexible gasifier development for efficient and reliable syngas production from varying solid waste and biomass component mixtures with minimal changes to the operating conditions.

Categories
Defenses

Dissertation Defense: Harnoor Sachar

TItle: Atomistic and theoretical description of liquid flows in polyelectrolyte-brush-grafted nanochannels

Author: Harnoor Singh Sachar

Date/Time: March 30, 2021 (Tuesday), 3:00 PM – 5:00 PM EDT

Zoom Link: https://umd.zoom.us/j/9765159282

List of Committee Members
Dr. Siddhartha Das (Chair)
Dr. Amir Riaz
Dr. Peter W. Chung
Dr. Don DeVoe
Dr. Silvina Matysiak (Dean’s Representative)

Abstract
Polyelectrolyte (PE) chains grafted in close proximity stretch out to form a “brush”-like configuration. Such PE brushes can represent a special class of nanomaterials that are capable of exhibiting stimuli-responsive behavior. They can be manipulated as needed by changing the environmental conditions like pH, solvent quality, salt concentration, temperature, etc. This responsiveness renders them very useful for a plethora of applications such as lubrication, emulsion stabilization, current rectification, nanofluidic energy conversion, drug delivery, oil recovery, etc. Therefore, gaining fundamental insights into PE brush systems is of utmost importance for both industrial as well as academic research. In this dissertation, we make use of theoretical and computational tools to improve our understanding of planar PE brushes and then use this understanding to probe flows in PE brush-grafted nanochannels.

We begin our quest by conducting all-atom Molecular Dynamics (MD) simulations to probe the microstructure of planar PE brushes with an unprecedented atomistic resolution. This allows us to not only investigate the properties of the PE chains but also the local structure and arrangement of the counterions and water molecules trapped within the brushes. Next, we use our atomistic model to probe the effects of variation in charge density on the microstructure of weak polyionic brushes. Such a variation in the charge density is typically enforced by a change in the surrounding pH and is a characteristic behavior of pH-responsive (annealed) PE brushes.

Furthermore, we go on to develop the most exhaustive theoretical model for pH-responsive PE brushes known as the augmented Strong Stretching Theory (SST). Our model is an improvement over the existing state-of-the-art as it considers the effects of the excluded volume interactions and an expanded form of the mass action law. We further improve this model by including several non-Poisson Boltzmann effects, especially relevant at high salt concentrations. This improved model is in excellent agreement with the results of our all-atom MD simulations.

Next, we use our augmented SST to model pressure-driven transport in backbone-charged PE brush-grafted nanochannels. Our results are an improvement over previous electrokinetic studies that did not consider a thermodynamically self-consistent description of the brushes. Finally, we conduct all-atom MD simulations to probe the pressure-driven transport of water in PE brush-grafted nanochannels using an all-atom framework. The nanoscale energy conversion characteristics obtained from our simulations are in reasonable agreement with the predictions of our continuum framework and lie within the range of values reported by a prior experimental study.